\qquad

Quiz 4

Question 1. (8 pts)
Determine whether the following statements are true or false. If false, explain why.
(a) V is a vector space of dimension n and S is a set of vectors in V. If S spans V, then the number of vectors in S is $\geq n$.

Solution: True.
(b) Let W be the subspace spanned by $\{1, t\}$ in $P_{9}(t)$. Then $\operatorname{dim} W=2$.

Solution: True.
(c) Let u and $v_{1}, v_{2}, \cdots, v_{m}$ be vectors in a vector space V. If u is a linear combination of v_{1}, \cdots, v_{m}, then the set $\left\{u, v_{1}, \cdots, v_{m}\right\}$ is linearly dependent.

Solution: True.
(d) Let V be a vector space of dimension n. If $\left\{u_{1}, \cdots, u_{m}\right\}$ is linearly independent set of vectors in V, then $m=n$.

Solution: False.

Question 2. (12 pts)

(a) Given vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
3 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{r}
0 \\
1 \\
4 \\
-1
\end{array}\right], v_{3}=\left[\begin{array}{r}
2 \\
-3 \\
-6 \\
3
\end{array}\right], v_{4}=\left[\begin{array}{r}
4 \\
-1 \\
8 \\
1
\end{array}\right]
$$

Determine whether v_{1}, v_{2}, v_{3} and v_{4} are linearly independent.
Solution: For the matrix

$$
A=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
v_{1} & v_{2} & v_{3} & v_{4} \\
\mid & \mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
3 & 4 & -6 & 8 \\
0 & -1 & 3 & 1
\end{array}\right]
$$

Use Gaussian elimination to find its reduced echelon form

$$
\left[\begin{array}{rrrr}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

whose rank is 2 . So v_{1}, v_{2}, v_{3} and v_{4} are linearly dependent.
(b) Let

$$
A=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
v_{1} & v_{2} & v_{3} & v_{4} \\
\mid & \mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 2 & 4 \\
0 & 1 & -3 & -1 \\
3 & 4 & -6 & 8 \\
0 & -1 & 3 & 1
\end{array}\right]
$$

Find a basis for the column space of A.
Solution: Notice that the matrix A is the same as that in Part (a). Using the reduced echelon form from Part (a), we see that a basis of the column space of A is

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
3 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{r}
0 \\
1 \\
4 \\
-1
\end{array}\right]
$$

